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Multi-object quantum traveling ballot scheme
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Based on quantum mechanics, a traveling ballot scheme with anonymity and secrecy is introduced to realize
voting. By searching the objects in large amount of data bases, every voter may cast votes to his desired
candidates. Therefore, the proposed scheme may be applied to voting with a great deal of candidates, such
as network voting and so on. The security analysis of the present scheme is also performed.
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Quantum mechanics provides novel features to infor-
mation processing, extending the capabilities beyond
those classical applications only. As a resource in quan-
tum communication, quantum entanglement is valu-
able for accomplishing many quantum computation
and other applications[1,2]. The most prominent re-
searches are investigated in some fields such as quantum
computation[3,4], quantum teleportation[5,6], and quan-
tum cryptography[7], with the latter being the most ma-
ture experimentally. Based on the creation of a multipar-
tite entangled state in quantum computation, the quan-
tum gate that lies beyond the capabilities of linear optics,
can be implemented practically[8]. Recently, because the
Heisenberg spin systems are natural candidates for simu-
lating the interactions between qubits, the entanglement
in Heisenberg spin chain has been studed.

Motivated by these development in quantum entangle-
ment, we investigate its application in quantum voting
with the relation between entanglement and quantum
phase transition. In some situations, ballot protocol is
always effective that people want to vote their desired
objects among a great deal of candidates such as the elec-
tronic balloting or to select more prevalent books in net-
work. Reliable voting protocol should hence be a private,
secure, and verifiable scheme[9,10]. In quantum informa-
tion, the security and anonymity in quantum ballot pro-
tocol are based on the quantum mechanics. It requires
that the voters need quantum resources for a remote state
preparation to realize their votes and the resources can
be applied into practice such as network voting with the
development of quantum network[11]. Generally, two au-
thorities are addressed, one is called agent who prepares
ballot states and the other is called tallyman who counts
the votes. To the vote, each party has to make a choice
between yes or no. After all votes have been made, the
vote tally can be determined by a collective measurement
of tallyman and read directly from the computation basis
states.

In this letter, we describe a system of quantum anony-
mous traveling voting protocol. One authority prepares
an entangled state for the secrecy of ballots. After get-
ting the list of all candidates from the agent, voters first
search their desired objects if there exist a great deal of
ones to choose. Every voter may cast votes to his suit-
able objects which are maybe more than one. Resorting

to the quantum search algorithm[4], voters may find them
quickly.

In the voting scheme, assume there are K voters
V1, · · · , VK , N ballot objects B0, · · · , BN−1, and two au-
thorities, i.e., an agent and a tallyman. In the anony-
mous traveling ballot scheme, the main idea is that the
voters cast their votes orderly with a traveling state. Let
N2-dimension space H = HV ⊗ HT be Hilbert space,
where HV and HT are N -dimension subspaces. Assume
{|0〉, · · · , |N − 1〉} is a set of computational orthonormal
basis states, i.e., 〈i|j〉 = δij , i, j ∈ {0, 1, · · · , N − 1}. In
space H, the agent firstly prepares an entangled system
pair (pv, pt) which is expressed as

|A〉 =
1√
N

(
N−1
∑

n=0

|n, N − n − 1〉) = U |A〉V ⊗ |A〉T , (1)

where pv ∈ HV , pt ∈ HT , |n, N − n − 1〉 = |n〉V ⊗ |N −
n − 1〉T , and U is an entanglement generation operator.
Furthermore, subscript V is voting site and T is author-
ity site. The agent then sends pv to the first voter V1.
Having received the system sent from the agent, if V1

does not cast any one of these candidates, he sends pv

to the next voter. Otherwise, V1 will research his de-
sired candidate for casting vote. Let τ be the suitable
candidate whom he wants to vote. In terms of gener-
alized Grover algorithm[3,4], |A〉V may be expressed as
|A〉V = sin φ|α〉 + cosφ|β〉, where φ = arcsin( 1√

N
), and

|α〉 = |τ〉, |β〉 =
1√
N

∑

n6=τ

|n〉. (2)

Employing a searching operator Q on the state |A〉V for

times of r = round(π
2

√
N), V1 may obtain the desired

state |τ〉 with the possibility near to 1. For ascertaining
whether the found element is state |τ〉, V1 may resort to
an ancilla state |q〉 in a register R(1) which is held by him-
self. With a Boolean function g(x) : {0, · · · , N − 1} →
{0, 1}, extremely V1 can obtain his desired state. As fol-
lowing, he will cast his vote to the candidate τ . Denote an

phase shifting operator acted by Vk as M(k)
n = exp(iθn),

where 1 < k < K, 0 < n < N , θn = 2nπ/N . The state
|τ〉 after V1 casting his vote becomes

|V1〉 = M(1)
τ |τ〉 = exp(iθτ )|τ〉. (3)

1671-7694/2009/020152-04 c© 2009 Chinese Optics Letters



February 10, 2009 / Vol. 7, No. 2 / CHINESE OPTICS LETTERS 153

After V1 completes his voting, the ballot state |A〉 may
be expressed as

|A1〉 =
1√
N

(
∑

n6=τ

|n, N − 1 − n〉 + |V1〉|N − 1 − τ〉). (4)

Then, V1 sends |A1〉 to the next voter V2. As before, V2

also makes similar operation to his received ballot state
so that |A2〉 is obtained. The process is repeated until the
final voter casts his vote and the state |AK〉 is obtained,
after which he returns the particle to the tallyman. On
the other hand, the agent also returns his holding system
pt to the tallyman. By calculating the received entangled
state, the tallyman may get the yes vote number of every
candidates Bn (n = 0, · · · , N −1) as following operation.
With respect to the eigenvalue of every state vector, the
tallyman determines the value of the tally from the ex-
pectation 〈AK |T̂n|AK〉 = Mn, where T̂n = n|Tn〉〈Tn| is
the corresponding multipartite tally operator for

|Tn〉 =
1√
N

N
∑

j=0

exp(ijθn)|j, N − 1 − j〉. (5)

Consequently, after all the particles are translated to the
tallyman, he will count the tallies of every candidates.
The circuit of the traveling ballot system is shown in
Fig. 1.

During the voting procedure, no particle carries any in-
formation about the votes being cast. The vote informa-
tion is carried in the correlations between the particles, so
that the anonymity of voting procession is insured. This
also protects the privacy of the votes from every voter.

Now we consider the multi-object voting approach. As-
sume more than one objects are entitled to be cast by vot-
ers in protocol, such as the traveling ballot scheme. After
using multi-object search operator Qm to act on |A〉V for

times of rm = round{π
4

√

N
m [1+O(m

N )]}, every voter may

obtain the desired states |τ1〉, · · · , |τm〉 with probability

Pm = cos2(rmφ − µ), where φ = sin−1(
2
√

m(N−m)

N ) and
µ ≈ π

2 for m ≪ N . And then, the voter Vk applies an

operator M(k) on his selected states:

M(k)|Ak〉 =
1√
N

(

m
∑

j=1

exp(iθτj
)|τj , N − 1 − τj〉

+

N
∑

k 6=τj

|k, N − 1 − k〉). (6)

Fig. 1. Quantum circuit of anonymous traveling ballot
scheme.

Finally, each of candidate tallies may be counted by the
tallyman. The anonymous voting for multiple objects
among the great deal of candidates can be applied in a
number of different scenarios, such as network election
and so on. In the correlations between the particles, the
quantum state contains no information about how indi-
viduals voted, and the entangled state shared between at
least two sites. Because of the physical properties, only
collective features of the set of votes are calculated and
made public, such as the tally of yes and no votes, so
that the ballot information can be kept secret.

If two separated ballot agents separately have attack
for the scheme, then this attack will be detected with
one half of the time. Because any change of states will be
made public, cheating attempt by the ballot agents must
be detected on average. Subsequently, the qubit system
is evidently disturbed. If the voters take attacking to-
gether and compare the projections onto phase states,
then the total particle number of the attack should be
altered on average with a probability N

N+1 . As the agent
does not have access to the site V at any point in this
operation, in the traveling ballot scheme, he hence can
only see the mixed state

TrV (|AK〉〈AK |) =
1

N

N−1
∑

n=0

(|n〉〈n|)V . (7)

Likewise, the voters who do not have access to the site
T can just see a mixed state too. If the tallyman has
access to both modes at site T , the states |N − 1 − l, l〉
form an orthonormal basis for an N -dimension subspace
for 0 ≤ l ≤ N − 1. To obtain the tally, the tallyman
should find the expectation value of the tally operator.
The tallyman can access the tally number only if he is in
possession of all particles. The voting procession of indi-
vidual voters is kept secret from both the tallyman and
the other voters while the particles are shared between
the ballot sites.

Conclusive transfer is more valuable than simple state
transfer with the same fidelity. A single spin−1/2 quan-
tum chain could not be used for conclusive transfer,
because any measurement would destroy the unknown
quantum state that is being transferred[12]. We consider
that the simplest quantum chain for conclusive transfer
is a system consisting of two uncoupled quantum chains
(1) and (2) which are between the users for traveling
ballot state. Define a general finite quantum network
graph G = {V (G), E(G)}, where V (G) is the finite set
of its vertices and E(G) is the set of its edges. A source
state sender, i.e., the agent, is located to the first spin
from G. Quantum ballot state transfer over a network
is similar to the quantum random walk problem. To a
one-dimensional chain, the Hamiltonian in single-particle
subspace can be written as

HG =
N+1
∑

j=0

ωj(σ
x
j σx

j+1 + σy
j σy

j+1), (8)

where ωj is the time-independent coupling constant, σj

is a Pauli matrix. Denote two Hamiltonians H(1) and
H(2) of a network G as well as two Hilbert spaces H1

and H2 likes HG. The tallyman also needs the abil-
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ity to perform single-qubit measurements. The rele-
vant sector of the Hilbert space is spanned by the states
|n〉(λ) = |0 · · · 010 · · ·0〉(λ) for 0 ≤ n ≤ N + 1 (λ = 1, 2),
which represents a state of the chain where the nth spin
is prepared in |1〉 and the other N + 1 ones in |0〉. Set
the initial state of two systems after time τ0 as

|φ(τ0)〉 =

N
∑

n=0

fn,0(τ0)|s(n)〉, (9)

where |s(n)〉 = α|0〉(1) ⊗ |n〉(2) + β|n〉(1) ⊗ |0〉(2) is the
nth superposition of excitations in both systems, and
|s(0)〉 = |s(1)〉. Furthermore, the dynamics restricted
to this subspace can be expressed in terms of the rth and
sth transition amplitudes as

fr,s(t) = 〈r|(λ)eiH(λ)t|s〉(λ),

r, s = 0, · · · , N ; λ = 1, 2. (10)

The state in Eq. (9) after time τ1 can be written as

|φ(τ1)〉 =

N
∑

n=0

fn,1(τ1)|s(n)〉. (11)

Denote a family of searching operators {Qn, n =
1, · · · , N}. In terms of the Grover algorithm, employ-
ing Q1 on state |φ(τ1)〉 for times of r, V1 can obtain the
ballot state |s(1)〉 with the possibility near 1 at his own
voting site. To ascertain whether the found element is
state |s(1)〉, V1 may resort to an ancilla state |q1〉 in a
register R1 which is held by himself. With a Boolean
function and measuring the ancilla state in register R1,
the voter V1 may finally obtain the ballot state |s(1)〉.
Then, he determines that wether or not to cast his vote
on the state |s(N1)〉. V1 applies phase shifting opera-

tion V1 = exp(iN̂δ1) for N̂ |n〉 = n|n〉 and an amount
δ1 = 2πu1/(N + 1) with u1 = 0, 1, on the ballot state.
If the candidate is not his desired one, u1 takes 0, i.e.,
he does not cast vote, otherwise, u1 takes 1. After the
voting of the first voter, the state becomes

|V1〉 = V1fN,1(τ1)|s(1)〉 +

N
∑

n6=1

fn,1(τ1)|s(n)〉

= exp(iN̂δ1)fN,1(τ1)|s(1)〉 +
N

∑

n6=1

fn,1(τ1)|s(n)〉.(12)

Whereafter, the traveling ballot state in Eq. (12) is trans-
ferred to the next voter V2. Because the resulting state
of every spin is a mixed state, the voter V2 cannot trace
off any voting information of V1 with his obtained state
from V1. Then, he performs a vote in a similar manner
with the phase shifting angle δ2 on state s(2) at his vot-
ing note, and the corresponding ballot state |V2〉 may be
obtained. Finally, the last voter VN may get the trav-
eling state cast by N − 1 pre-voters in quantum chains.
Similarly, if he does not cast a vote to this candidate, the
ballot state should be equal to the state that cast by the

voter VN−1. Otherwise, the ballot state by searching and
ascertaining, finally becomes

|VN 〉 =

N
∑

n=0

exp(iN̂δn)fn,N(τN )|s(n)〉. (13)

For counting the tally of ballot state, the voter VN then
translates the ballot state cast by all voters to another
authority (i.e., the tallyman). Similarly, tallyman can
determine the corresponding tallies cast by voters.

In the following, we will analyze the present protocols
against some attacks. We firstly concern an eavesdrop-
ping strategy that consists in applying a coherent attack
on a qubit sequence of finite length. Here, we use an
uncertainty principle due to Hall that puts a limit on the
sum of voters’ and Eve’s information when both groups
measure the same quantum system.

Assume the Eve who is not one of the participants in
scheme implements the entangled state attack strategy,
namely, Eve takes an attack strategy by applying an ar-
bitrary operation UV E on the ballot state |A〉. Then, his
intervention can be detected by the agent, which implies
that Eve cannot change the ballot results of voters with-
out being detected. In fact, suppose Eve tries to attack
the scheme by entangling his own particle as an ancilla
with the ballot state |A〉. Without loss of generality, in
quantum anonymous traveling ballot scheme we consider
that Eve wants to change the ballot result of the voter
Vk. Eve entangles her state |E〉k with Vk’s ballot state in
quantum network. Correspondingly, the complex state of
|Vk〉 and |E〉k can be denoted by |V 〉V TE = |Vk〉 ⊗ |E〉k.

At the voting site of Vk, unitary operation U
(k)
V E applied

by Eve on |V 〉V TE yields

U
(k)
V E |V 〉V TE =

1√
N

N−1
∑

n=0

|n, N − 1 − n〉|En〉k, (14)

where {En : n = 0, · · · , N − 1} is a set of Schmidt base.
After voted by Vk, the ballot state should be

|TEk
〉 = Mk|U (k)

V E |Φ〉V TE

=

N
∑

n=0

exp(iakθn)|n, N − 1 − n〉|En〉k. (15)

Denote the state held by tallyman after voted as |A′′〉.
By computing 〈A′′|T̂Ek

|A′′〉, where the form of T̂Ek
is

similar to Eq. (5), the tallyman may get that the total
tally is changed. The tallyman then sends the states to
corresponding voters for detecting the destroyed votes.
Therefore, no matter that Vk casts or not to |A〉, the re-
sult always may be detected by the voters, which implies
that Eve cannot intervene the procession of ballot.

Actually, denote that V̂ and Ê are voters’ and Eve’s
measurement operators applied on the particles sent from
the agent, then

IAVk
+ IAE ≤ 2 log2(N max

k,j
|〈vk|ekj〉|), (16)

where |vk〉 and |ekj〉 are the eigenstates of V̂k and Ê, re-
spectively. The inequality holds with IAVk

and IAE being
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information on the qubit without knowledge of the basis
chosen by the agent. Because voters and Eve may get the
same average information when measuring the different
basis, one obtains the possible upper bound on IAE for
a given IAVk

by assuming that Eve measures an observ-

able Ê complementary to V̂k, i.e., IAVk
+ IAE ≤ 2 log2 N

for |〈vk|ekj〉| = N−1/2, ∀k, j. In order to ensure the se-
curity of scheme with a nonzero rate, it should be sat-
isfied that IAVk

> IAE . So, it may be introduced that
IAB > (log2 N)/2 is a sufficient condition against coher-
ent attacks for large number of candidates.

Furthermore, we consider another general attack strat-
egy, i.e., individual eavesdropping based on the use of a
quantum cloning machine for qubits, that K systems are
used in the distributed ballot scheme. This strategy may
be detected in quantum distributed ballot scheme.

Consider the case of single ballot system of certain
voter Vk. Eve mainly investigates how to make an in-
dividual eavesdropping attack with a cloner to a single
ballot site. Eve employs a unitary operator

Us,t =
N−1
∑

n=0

exp(itθn)|n + s〉〈n| (17)

for s, t = 0, · · · , N − 1 to obtain a cloner of the ballot
system |A〉Vk

, where the subscripts s, t denote the shift
error and phase error respectively. Let amplitudes as,t

with
∑N−1

s,t=0 |as,t|2 = 1 be the characteristics of cloner.
In terms of cloning transformations, the gotten state is

|AE〉Vk
=

N−1
∑

n=0

as,tUs,t|n〉Vk
|Bs,−t〉E,E′ , (18)

where E and E′ are Eve’s clone and the cloning machine,
respectively, while |Bs,−t〉E,E′ is a set of orthonormal
maximally entangled states of the two-particle system

|Bs,t〉E,E′ =
1

N

N−1
∑

n=0

exp(itθn)|n〉E |n + s〉E′ . (19)

Tracing the output joint state of Eq. (18) over EE′ held
by the tallyman implies that the agent’s state |A〉Vk

is
transformed into the mixture at voting sites,

ρV =

N−1
∑

s,t=0

|as,t|2Us,t|AE〉VkVk
〈AE |U †

s,t. (20)

Thus, after the state |A〉Vk
underwent an operator Us,t,

the error probability is |as,t|2. To any ballot state |n〉
in the computational basis, if the voter Vk does not
cast vote to any candidates, the phase errors clearly do
not play any role in the above mixture since Us,t|n〉 =
exp(itθn)|n+s〉. So, the voters’ fidelity can be expressed

as F = 〈n|ρVk
|n〉 =

∑N−1
t=0 |a0,t|2. Denote |n̄〉 = F|n〉

the dual of computational basis |n〉 of candidate for
n = 0, · · · , N − 1, where F is Fourier transform. If
Vk casts a vote to the voting sites, then after the vot-
ing, Eve may get Us,t|n̄〉 = exp(itθn+s)|n + s〉. So, the

shift errors (s 6= 0) do not play any role and the vot-

ers’ fidelity becomes F̄ = 〈n̄|ρVk
|n̄〉 =

∑N−1
s=0 |as,0|2. For

the cloner to copy equally well the states of both cases,
Eve chooses a proper N × N amplitude matrix. The
amplitude matrix may result in a cloning fidelity FE for
Eve. Maximizing Eve’s optimal fidelity FE for a given
value of Vk’s fidelity F yields the optimal cloner. Let us
see how Eve can maximize her information on the ballot
state. To the ballot state |n〉, it is clear from Eq. (18)
that Eve can obtain voter’s shift error s simply by per-
forming a partial Bell measurement on EE′. In order
to infer the agent’s state, Eve must distinguish among
N nonorthogonal states regardless of the measured value
of s. Denote IAVk

the corresponding mutual information
between the agent and voter Vk. By taking an optimal
fidelity FE , Eve’s information IAE consequently may be
obtained. However, if the agent, voter Vk, and Eve share
many independent realizations of a probability distribu-
tion, and then with the great of candidates in the present
scheme, it is sufficient that IAVk

> IAE for every voter
Vk. Therefore, the introduced ballot scheme is security
in the network election specially.

In conclusion, we have introduced the quantum travel-
ing ballot scheme for ensuring the anonymous voting in
different scenarios. With all the information about the
votes contained in the correlations between the particles,
the quantum state contains no information about how
individuals voted. Because of the physical properties,
only collective features of the set of votes are calculated
and open, such as the tally of yes and no votes, so that
the ballot information can be kept secret. After all votes
have been made, the vote tally can be determined by a
collective measurement.
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